Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38626346

RESUMEN

Background: The incidence of chronic obstructive pulmonary disease (COPD) and osteoporosis are rising worldwide. Observational studies showed that COPD is associated with increased risk of osteoporosis. We performed the Mendelian randomization (MR) study to genetically investigate the causality of COPD on osteoporosis. Methods: We explored the causal effect of COPD on osteoporosis by the MR analysis. A total of 108 genetic loci single nucleotide polymorphisms were related to COPD. The primary approach in this MR analysis was the inverse variance-weighted (IVW) method. Simple median, weighted median, MR Egger and penalized weighted median analyzed the sensitivity. Results: The study found that genetically predicted COPD is causally linked to an increased risk of osteoporosis, as evidenced by both the fixed-effect IVW model and random-effect IVW model (odds ratio [OR], 1.010; 95% CI, 1.001-1.019, P=0.021; OR, 1.010; 95% CI, 1.001-1.020, P=0.039). This association was also observed in other methods, including the simple median, weighted median, Penalised weighted median, MR-Egger method, and MR Egger (bootstrap) method. The results of the IVW and MR-Egger analyses showed no heterogeneity (Q=131.374, P=0.061 and Q=128.895, P=0.069, respectively). Additionally, MR-Egger regression did not reveal any pleiotropic influence through genetic variants (intercept, -0.004; P=0.101). Lastly, the leave-one-out sensitivity analysis did not identify any individual SNP that significantly influenced the association between COPD and osteoporosis. Conclusion: The Mendelian randomization analysis showed a significant detrimental effect of COPD on the risk of osteoporosis.

2.
J Exp Clin Cancer Res ; 43(1): 39, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38303029

RESUMEN

BACKGROUND: Ubiquitination plays an important role in proliferating and invasive characteristic of glioblastoma (GBM), similar to many other cancers. Tripartite motif 25 (TRIM25) is a member of the TRIM family of proteins, which are involved in tumorigenesis through substrate ubiquitination. METHODS: Difference in TRIM25 expression levels between nonneoplastic brain tissue samples and primary glioma samples was demonstrated using publicly available glioblastoma database, immunohistochemistry, and western blotting. TRIM25 knockdown GBM cell lines (LN229 and U251) and patient derived GBM stem-like cells (GSCs) GBM#021 were used to investigate the function of TRIM25 in vivo and in vitro. Co-immunoprecipitation (Co-IP) and mass spectrometry analysis were performed to identify NONO as a protein that interacts with TRIM25. The molecular mechanisms underlying the promotion of GBM development by TRIM25 through NONO were investigated by RNA-seq and validated by qRT-PCR and western blotting. RESULTS: We observed upregulation of TRIM25 in GBM, correlating with enhanced glioblastoma cell growth and invasion, both in vitro and in vivo. Subsequently, we screened a panel of proteins interacting with TRIM25; mass spectrometry and co-immunoprecipitation revealed that NONO was a potential substrate of TRIM25. TRIM25 knockdown reduced the K63-linked ubiquitination of NONO, thereby suppressing the splicing function of NONO. Dysfunctional NONO resulted in the retention of the second intron in the pre-mRNA of PRMT1, inhibiting the activation of the PRMT1/c-MYC pathway. CONCLUSIONS: Our study demonstrates that TRIM25 promotes glioblastoma cell growth and invasion by regulating the PRMT1/c-MYC pathway through mediation of the splicing factor NONO. Targeting the E3 ligase activity of TRIM25 or the complex interactions between TRIM25 and NONO may prove beneficial in the treatment of GBM.


Asunto(s)
Glioblastoma , Factores de Transcripción , Proteínas de Motivos Tripartitos , Humanos , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Biosens Bioelectron ; 236: 115415, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37245459

RESUMEN

Cancer development is driven by diverse processes, and metabolic alterations are among the primary characteristics. Multiscale imaging of aberrant metabolites in cancer is critical to understand the pathology and identify new targets for treatment. While peroxynitrite (ONOO-) is reported being enriched in some tumors and plays important tumorigenic roles, whether it is upregulated in gliomas remains unexplored. To determine the levels and roles of ONOO- in gliomas, efficient tools especially those with desirable blood-brain barrier (BBB) permeability and can realize the in situ imaging of ONOO- in multiscale glioma-related samples are indispensable. Herein, we proposed a strategy of physicochemical property-guided probe design, which resulted in the development of a fluorogenic probe NOSTracker for smartly tracking ONOO-. The probe showed sufficient BBB permeability. ONOO- triggered oxidation of its arylboronate group was automatically followed by a self-immolative cleavage of a fluorescence-masking group, liberating its fluorescence signal. The probe was not only highly sensitive and selective towards ONOO-, but its fluorescence favored desirable stability in various complex biological milieus. Guaranteed by these properties, multiscale imaging of ONOO- was realized in vitro in patient-derived primary glioma cells, ex vivo in clinical glioma slices, and in vivo in the glioma of live mice. The results showed the upregulation of ONOO- in gliomas. Furthermore, a specific ONOO- scavenger uric acid (UA) was pharmaceutically used to downregulate ONOO- in glioma cell lines, and an anti-proliferative effect was observed. These results taken together imply the potential of ONOO- as a biomarker and target for glioma treatment, and propose NOSTracker as a reliable tool to further explore the role of ONOO- in glioma development.


Asunto(s)
Técnicas Biosensibles , Glioma , Ratones , Animales , Barrera Hematoencefálica/metabolismo , Ácido Peroxinitroso , Colorantes Fluorescentes/química , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Biomarcadores , Imagen Óptica
4.
Cancer Med ; 12(2): 1461-1470, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35861406

RESUMEN

BACKGROUND: Tumor treating fields (TTFields) is an FDA-approved adjuvant therapy for glioblastoma. The distribution of an applied electric field has been shown to be governed by distinct tissue structures and electrical conductivity. Of all the tissues the skull plays a significant role in modifying the distribution of the electric field due to its large impedance. In this study, we studied how remodeling of the skull would affect the therapeutic outcome of TTFields, using a computational approach. METHODS: Head models were created from the head template ICBM152 and five realistic head models. The electric field distribution was simulated using the default TTFields array layout. To study the impact of the skull on the electric field, we compared three cases, namely, intact skull, defective skull, and insulating process, wherein a thin electrical insulating layer was added between the transducer and the hydrogel. The electric field strength and heating power were calculated using the FEM (finite element method). RESULTS: Removing the skull flap increased the average field strength at the tumor site, without increasing the field strength of "brain". The ATVs of the supratentorial tumors were enhanced significantly. Meanwhile, the heating power of the gels increased, especially those overlapping the skull defect site. Insulation lightly decreased the electric field strength and significantly decreased the heating power in deep tumor models. CONCLUSION: Our simulation results showed that a skull defect was beneficial for superficial tumors but had an adverse effect on deep tumors. Skull removal should be considered as an optional approach in future TTFields therapy to enhance its efficacy. An insulation process could be used as a joint option to reduce the thermogenic effect of skull defect. If excessive increase in heating power is observed in certain patients, insulating material could be used to mitigate overheating without sacrificing the therapeutic effect of TTFields.


Asunto(s)
Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Humanos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Encéfalo/patología , Glioblastoma/patología , Terapia Combinada , Terapia por Estimulación Eléctrica/métodos , Cráneo/patología
5.
Front Immunol ; 13: 1029737, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505426

RESUMEN

Binding of CD95, a cell surface death receptor, to its homologous ligand CD95L, transduces a cascade of downstream signals leading to apoptosis crucial for immune homeostasis and immune surveillance. Although CD95 and CD95L binding classically induces programmed cell death, most tumor cells show resistance to CD95L-induced apoptosis. In some cancers, such as glioblastoma, CD95-CD95L binding can exhibit paradoxical functions that promote tumor growth by inducing inflammation, regulating immune cell homeostasis, and/or promoting cell survival, proliferation, migration, and maintenance of the stemness of cancer cells. In this review, potential mechanisms such as the expression of apoptotic inhibitor proteins, decreased activity of downstream elements, production of nonapoptotic soluble CD95L, and non-apoptotic signals that replace apoptotic signals in cancer cells are summarized. CD95L is also expressed by other types of cells, such as endothelial cells, polymorphonuclear myeloid-derived suppressor cells, cancer-associated fibroblasts, and tumor-associated microglia, and macrophages, which are educated by the tumor microenvironment and can induce apoptosis of tumor-infiltrating lymphocytes, which recognize and kill cancer cells. The dual role of the CD95-CD95L system makes targeted therapy strategies against CD95 or CD95L in glioblastoma difficult and controversial. In this review, we also discuss the current status and perspective of clinical trials on glioblastoma based on the CD95-CD95L signaling pathway.


Asunto(s)
Células Endoteliales , Glioblastoma , Humanos , Transducción de Señal , Apoptosis , Microambiente Tumoral
6.
Front Oncol ; 12: 971462, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36033448

RESUMEN

Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.

7.
Oxid Med Cell Longev ; 2022: 4564471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308167

RESUMEN

The polarization of microglia is recognized as a crucial factor in reducing neuroinflammation and promoting hematoma clearance after intracerebral hemorrhage (ICH). Previous studies have revealed that redox components participate in the regulation of microglial polarization. Recently, the novel Nrf2 activator omaveloxolone (Omav) has been validated to improve neurological function in patients with neurodegenerative disorders by regulating antioxidant responses. In this study, we examined the efficacy of Omav in ICH. Omav significantly promoted Nrf2 nuclear accumulation and the expression of HO-1 and NQO1 in BV2 cells. In addition, both in vitro and in vivo experiments showed that Omav treatment inhibited M1-like activation and promoted the activation of the M2-like microglial phenotype. Omav inhibited OxyHb-induced ROS generation and preserved the function of mitochondria in BV2 cells. Intraperitoneal administration of Omav improved sensorimotor function in the ICH mouse model. Importantly, these effects were blocked by pretreatment with ML385, a selective inhibitor of Nrf2. Collectively, Omav modulated microglial polarization by activating Nrf2 and inhibiting ROS generation in ICH models, suggesting that it might be a promising drug candidate for the treatment of ICH.


Asunto(s)
Lesiones Encefálicas , Microglía , Animales , Lesiones Encefálicas/tratamiento farmacológico , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/metabolismo , Humanos , Ratones , Microglía/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fenotipo , Triterpenos
8.
Clin Neurol Neurosurg ; 210: 106950, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34583274

RESUMEN

OBJECTIVE: Contralateral subdural effusion after decompressive craniectomy (CSEDC) is rare, and the optimal treatment is not determined. We present 11 cases of CSEDC and give an overview of the English literature pertaining to this disease. METHODS: We searched the database at our institution and performed a search of English literature in PubMed and Google Scholar. Keywords used were as follows (single word or combination): "subdural hygroma"; "subdural effusion"; "decompressive craniectomy". Only patients with CSEDC and contained adequate clinical information pertinent to the analysis were included. RESULTS: 11 cases of CSEDC were recorded at our institution. They comprised ten men and one woman with an average age of 41.9 years. All the 8 symptomatic patients underwent surgery and the CSEDC resolved gradually. 68 cases of CSEDC were found in the literature. Including ours, a total of 79 patients were analyzed. Conservative treatment was effective in the asymptomatic patients. 41.7% of the symptomatic CSEDC underwent burr hole drainage and successfully drained the CSEDC. However, 76% of them received subsequent surgery to manage the reaccumulation of CSEDC. 25% of the symptomatic patients underwent cranioplasty, while 13.3% of them received Ommaya drainage later because of CSEDC recurrence. 18.3% of the symptomatic patients underwent cranioplasty plus subduroperitoneal shunting, and all CSEDC resolved completely. CONCLUSIONS: Burr hole drainage appears to be only a temporary measure. Early cranioplasty should be performed for patients with CSEDC. CSF shunting procedures may be required for patients in whom CSEDC have not been solved or hydrocephalus manifest after cranioplasty.


Asunto(s)
Craniectomía Descompresiva/efectos adversos , Hidrocefalia/cirugía , Efusión Subdural/etiología , Adulto , Drenaje , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía , Efusión Subdural/cirugía , Resultado del Tratamiento , Trepanación
9.
ACS Sens ; 6(9): 3330-3339, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34448576

RESUMEN

The extent of resection and tumor grade are two predominant prognostic factors for glioma. Fluorescent imaging is promising to facilitate accurate resection and simultaneous tumor grading. However, no probe fulfilling this task has been reported. Herein, we proposed a strategy of de novo design toward first-in-class fluorescent probes for simultaneously differentiating glioma boundary and grades. By bioinformatics analysis in combination with experimental validation, platelet-derived growth factor receptor ß (PDGFRß) was revealed as a promising biomarker for glioma imaging and grading. Then, fluorogenic probe PDGFP 1 was designed, guided by the structure-activity relationship study. Finally, the probe was demonstrated to stain glioma cells and tissues in the mice orthotopic glioma model with high selectivity over normal brain cells or tissues. Meanwhile, ex vivo experiments using patient-derived samples indicated that the fluorescence was significantly positively correlated with the tumor grades. This result highlighted the feasibility of the three-step de novo probe design strategy and suggested PDGFP 1 as a promising probe for simultaneously differentiating glioma boundary and grades, showing prospects of clinical translation.


Asunto(s)
Biología Computacional , Glioma , Animales , Glioma/diagnóstico , Humanos , Ratones
10.
J Neuroinflammation ; 18(1): 154, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233703

RESUMEN

BACKGROUND: Complex changes in the brain microenvironment following traumatic brain injury (TBI) can cause neurological impairments for which there are few efficacious therapeutic interventions. The reactivity of astrocytes is one of the keys to microenvironmental changes, such as neuroinflammation, but its role and the molecular mechanisms that underpin it remain unclear. METHODS: Male C57BL/6J mice were subjected to the controlled cortical impact (CCI) to develop a TBI model. The specific ligand of AXL receptor tyrosine kinase (AXL), recombinant mouse growth arrest-specific 6 (rmGas6) was intracerebroventricularly administered, and selective AXL antagonist R428 was intraperitoneally applied at 30 min post-modeling separately. Post-TBI assessments included neurobehavioral assessments, transmission electron microscopy, immunohistochemistry, and western blotting. Real-time polymerase chain reaction (RT-PCR), siRNA transfection, and flow cytometry were performed for mechanism assessments in primary cultured astrocytes. RESULTS: AXL is upregulated mainly in astrocytes after TBI and promotes astrocytes switching to a phenotype that exhibits the capability of ingesting degenerated neurons or debris. As a result, this astrocytic transformation promotes the limitation of neuroinflammation and recovery of neurological dysfunction. Pharmacological inhibition of AXL in astrocytes significantly decreased astrocytic phagocytosis both in vivo and in primary astrocyte cultures, in contrast to the effect of treatment with the rmGas6. AXL activates the signal transducer and activator of the transcription 1 (STAT1) pathway thereby further upregulating ATP-binding cassette transporter 1 (ABCA1). Moreover, the supernatant from GAS6-depleted BV2 cells induced limited enhancement of astrocytic phagocytosis in vitro. CONCLUSION: Our work establishes the role of AXL in the transformation of astrocytes to a phagocytic phenotype via the AXL/STAT1/ABCA1 pathway which contributes to the separation of healthy brain tissue from injury-induced cell debris, further ameliorating neuroinflammation and neurological impairments after TBI. Collectively, our findings provide a potential therapeutic target for TBI.


Asunto(s)
Astrocitos/enzimología , Lesiones Traumáticas del Encéfalo/metabolismo , Corteza Cerebral/enzimología , Fagocitosis/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Animales , Astrocitos/patología , Lesiones Traumáticas del Encéfalo/patología , Células Cultivadas , Corteza Cerebral/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Tirosina Quinasa del Receptor Axl
11.
Front Immunol ; 12: 582594, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815356

RESUMEN

Objective: Pediatric diffuse gliomas (pDGs) are relatively rare and molecularly distinct from pediatric pilocytic astrocytoma and adult DGs. Immunotherapy is a promising therapeutic strategy, requiring a deep understanding of tumor immune profiles. The spatial locations of brain tumors might be related to the molecular profiles. We aimed to analyze the relationship between the immune checkpoint molecules with the locations of DGs comparing pediatric with adult patients. Method: We studied 20 pDGs patients (age ≤ 21 years old), and 20 paired adult patients according to gender and histological types selected from 641 adult patients with DGs. Immune checkpoint molecules including B7-H3, CD47, and PD-L1, as well as tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs), were manifested by immunohistochemical staining. Expression difference analyses and Spearman's correlation were performed. MRI data were voxel-wise normalized, segmented, and analyzed by Fisher's exact test to construct the tumor frequency and p value heatmaps. Survival analyses were conducted by Log-rank tests. Result: The median age of pediatric patients was 16 years. 55% and 30% of patients were WHO II and III grades, respectively. The left frontal lobe and right cerebellum were the statistically significant locations for pDGs, while the anterior horn of ventricles for adult DGs. A potential association between the expression of PD-L1 and TAMs was found in pDGs (p = 0.002, R = 0.670). The right posterior external capsule and the lateral side of the anterior horn of the left ventricle were predominant locations for the adult patients with high expression of B7-H3 and low expression of PD-L1 compared to pediatric ones, respectively. Pediatric patients showed significantly improved overall survival compared with adults. The prognostic roles of immune checkpoint molecules and TILs/TAMs were not significantly different between the two groups. Conclusion: Immune checkpoint-associated locations of diffuse gliomas comparing pediatric with adult patients could be helpful for the immunotherapy decisions and design of clinical trials.


Asunto(s)
Antígenos B7/inmunología , Antígeno B7-H1/inmunología , Neoplasias Encefálicas/inmunología , Antígeno CD47/inmunología , Glioma/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Adolescente , Adulto , Anciano , Antígenos B7/metabolismo , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Antígeno CD47/metabolismo , Niño , Femenino , Glioma/metabolismo , Glioma/terapia , Humanos , Inmunohistoquímica , Inmunoterapia/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Análisis de Supervivencia , Adulto Joven
12.
Front Oncol ; 11: 582694, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692947

RESUMEN

Glioblastoma (GBM), one of the deadliest primary brain malignancies, is characterized by a high recurrence rate due to its limited response to existing therapeutic strategies such as chemotherapy, radiation therapy, and surgery. Several mechanisms and pathways have been identified to be responsible for GBM therapeutic resistance. Glioblastoma stem cells (GSCs) are known culprits of GBM resistance to therapy. GSCs are characterized by their unique self-renewal, differentiating capacity, and proliferative potential. They form a heterogeneous population of cancer stem cells within the tumor and are further divided into different subpopulations. Their distinct molecular, genetic, dynamic, and metabolic features distinguish them from neural stem cells (NSCs) and differentiated GBM cells. Novel therapeutic strategies targeting GSCs could effectively reduce the tumor-initiating potential, hence, a thorough understanding of mechanisms involved in maintaining GSCs' stemness cannot be overemphasized. The mitochondrion, a regulator of cellular physiological processes such as autophagy, cellular respiration, reactive oxygen species (ROS) generation, apoptosis, DNA repair, and cell cycle control, has been implicated in various malignancies (for instance, breast, lung, and prostate cancer). Besides, the role of mitochondria in GBM has been extensively studied. For example, when stressors, such as irradiation and hypoxia are present, GSCs utilize specific cytoprotective mechanisms like the activation of mitochondrial stress pathways to survive the harsh environment. Proliferating GBM cells exhibit increased cytoplasmic glycolysis in comparison to terminally differentiated GBM cells and quiescent GSCs that rely more on oxidative phosphorylation (OXPHOS). Furthermore, the Warburg effect, which is characterized by increased tumor cell glycolysis and decreased mitochondrial metabolism in the presence of oxygen, has been observed in GBM. Herein, we highlight the importance of mitochondria in the maintenance of GSCs.

13.
Cancers (Basel) ; 13(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477374

RESUMEN

The infratentorial regions are vulnerable to develop brain metastases (BMs). However, the associations between the infratentorial localization of BMs and clinical characteristics remained unclear. We retrospectively studied 1102 patients with 4365 BM lesions. Voxel-wise mapping of MRI was applied to construct the tumor frequency heatmaps after normalization and segmentation. The analysis of differential involvement (ADIFFI) was further used to obtain statistically significant clusters. Kaplan-Meier method and Cox regression were used to analyze the prognosis. The parietal, insular and left occipital lobes, and cerebellum were vulnerable to BMs with high relative metastatic risks. Infratentorial areas were site-specifically affected by the lung, breast, and colorectal cancer BMs, but inversely avoided by melanoma BMs. Significant infratentorial clusters were associated with young age, male sex, lung neuroendocrine and squamous cell carcinomas, high expression of Ki-67 of primaries and BMs, and patients with poorer prognosis. Inferior OS was observed in patients with ≥3 BMs and those who received whole-brain radiotherapy alone. Infratentorial involvement of BMs was an independent risk factor of poor prognosis for patients who received surgery (p = 0.023, hazard ratio = 1.473, 95% confidence interval = 1.055-2.058). The current study may add valuable clinical recognition of BMs and provide references for BMs diagnosis, treatment evaluation, and prognostic prediction.

14.
Front Oncol ; 10: 1412, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974148

RESUMEN

Objective: Meningiomas presented preferred intracranial distribution, which may reflect potential biological natures. This study aimed to analyze the preferred locations of meningioma according to different biological characteristics. Method: A total of 1,107 patients pathologically diagnosed with meningiomas between January 2012 and December 2016 were retrospectively analyzed. Preoperative MRI were normalized, and lesions were semiautomatically segmented. The stereospecific frequency and p value heatmaps were constructed to compare two biological phenotypes using two-tailed Fisher's exact test. Age, sex, WHO grades, extent of resection (EOR), recurrence, and immunohistochemical markers including p53, Ki67, epithelial membrane antigen (EMA), progesterone receptor (PR), and CD34 were statistically analyzed. Recurrence-free survival (RFS) were analyzed by Kaplan-Meier method. Result: Of 1,107 cases, convexity (20.8%), parasagittal (16.1%), and falx (11.4%) were the most predominant loci of meningiomas. The p-value heatmap suggested lesion predominance in the left frontal and occipital convexity among older patients while in the left sphenoid wing, and right falx, parasellar/cavernous sinus, and middle fossa among younger patients. Lesions located at anterior fossa and frontal structures were more frequently seen in the male while left parietal falx and tentorial regions, and right cerebellopontine angle in the female. Grades II and III lesions presented predominance in the frontal structures compared with grade I ones. Meningiomas at the left parasagittal sinus and falx, tentorium, intraventricular regions, and skull-base structures were significantly to receive subtotal resection. Lesions with p53 positivity were statistically located at the left frontal regions and parasellar/cavernous sinus, higher Ki67 index at the left frontal and bilateral parietal convexity and right parasellar/cavernous sinus, EMA negativity at the right olfactory groove and left middle fossa, and CD34 positivity at the sellar regions and right sphenoid wing. Tumor recurrence rates for grades I, II, and III were 2.8, 7.9, and 53.8%, respectively. Inferior RFS, higher Ki67 index, grades II and III, and a larger preoperative volume were observed in older patients. Recurrent meningiomas were more frequently found at the occipital convexity, tentorium, sellar regions, parasagittal sinus, and left sphenoid wing. Conclusion: The preferred locations of meningioma could be observed according to different biological characteristics, which might be helpful for clinical decisions.

15.
Ann Transl Med ; 8(6): 283, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32355727

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary brain tumor, and is associated with a poor prognosis. Hypoxia is prevalent in the microenvironment of GBM, and promotes tumorigenesis and resistance to anticancer therapy. However, its mechanism remains incompletely understood. METHODS: We used immunohistochemistry, quantitative real-time PCR, and Western blots to assess c-Myc and Rab7a expression levels in 12 GBM specimens from a single institution. A luciferase reporter assay was conducted to confirmed whether Rab7a is transcriptionally regulated by c-Myc. To clarify the precise role of c-Myc/Rab7a on GBM cell proliferation, we did in vitro and in vivo analyses with lentivirus vectors. Cell viability was assessed using a cell counting kit-8 assay in the context of hypoxia. Autophagy was measured using transmission electron microscopy and Western blot, and apoptosis was measured using flow cytometry and Western blot. RESULTS: Gene and protein expression of c-Myc and Rab7a were significantly upregulated in GBM specimens. Moreover, c-Myc regulated Rab7a by specifically interacting with the Rab7a promoter. Furthermore, hypoxia activated the c-Myc/Rab7a pathway, which protects GBM cells from damage caused by hypoxia. Importantly, c-Myc/Rab7a inhibited apoptosis and induced autophagy in vitro and in vivo. CONCLUSIONS: Collectively, our results suggest that the c-Myc/Rab7a pathway protects GBM cells from hypoxic injury via regulation of apoptosis and autophagy, contributing to the growth of GBM.

16.
Chin Med J (Engl) ; 133(2): 174-182, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31929367

RESUMEN

BACKGROUND: Glioblastoma is one of the most common malignant brain tumors. Conventional clinical treatment of glioblastoma is not sufficient, and the molecular mechanism underlying the initiation and development of this disease remains unclear. Our study aimed to explore the expression and function of miR-873a-5p in glioblastoma and related molecular mechanism. METHODS: We analyzed the most dysregulated microRNAs from the Gene Expression Omnibus (GEO) database and examined the expression of miR-873-5p in 20 glioblastoma tissues compared with ten normal brain tissues collected in the Zhejiang Tongde Hospital. We then overexpressed or inhibited miR-873-5p expression in U87 glioblastoma cell lines and analyzed the phenotype using the cell counting kit-8 assay, wound healing assay, and apoptosis. In addition, we predicted upstream and downstream genes of miR-873-5p in glioblastoma using bioinformatics analysis and tested our hypothesis in U87 cells using the luciferase reporter gene assay and Western blotting assay. The differences between two groups were analyzed by Student's t test. The Kruskal-Wallis test was used for the comparison of multiple groups. A P < 0.05 was considered to be significant. RESULTS: The miR-873-5p was downregulated in glioblastoma tissues compared with that in normal brain tissues (normal vs. tumor, 0.762 ±â€Š0.231 vs. 0.378 ±â€Š0.114, t = 4.540, P < 0.01). Overexpression of miR-873-5p inhibited cell growth (t = 6.095, P < 0.01) and migration (t = 3.142, P < 0.01) and promoted cell apoptosis (t = 4.861, P < 0.01), while inhibition of miR-873-5p had the opposite effect. Mechanistically, the long non-coding RNA HOTAIRM1 was found to act as a sponge of miR-873-5p to activate ZEB2 expression in U87 cells. CONCLUSIONS: We uncovered a novel HOTAIRM1/miR-873-5p/ZEB2 axis in glioblastoma cells, providing new insight into glioblastoma progression and a theoretical basis for the treatment of glioblastoma.


Asunto(s)
Glioma/metabolismo , Glioma/patología , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Apoptosis/genética , Apoptosis/fisiología , Western Blotting , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Proliferación Celular/fisiología , Citometría de Flujo , Glioma/genética , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , Ensayo de Radioinmunoprecipitación , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
17.
Brain Res ; 1726: 146490, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31610150

RESUMEN

Circular RNAs (circRNAs) are a class of covalently closed non-coding RNAs, and aberrant alteration of their expression patterns is studied in numerous diseases. This study aimed to investigate whether intracerebral hemorrhage (ICH) affected circRNA expression profiles in the rat brain. Adult male Sprague-Dawley rats were subjected to intrastriatal injection of autologous artery blood to establish the ICH model. The cerebral cortex around hematoma was collected to perform circRNA microarray at 6 h, 12 h and 24 h. Quantitative reverse transcription-PCR (qRT-PCR) was used to validate the results. Bioinformatic methods were applied to predict ceRNA network and perform enrichment analyses for parent genes at three time points and target mRNAs. 111, 1145, 1751 up-regulated and 47, 732, 1329 down-regulated circRNAs were detected in the cerebral cortex of rats at 6 h, 12 h and 24 h after ICH compared with sham group. Most were from exonic regions. 93 were up-regulated and 20 were down-regulated at all three time points. Microarray results of 3 circRNAs were confirmed via qRT-PCR. GO and KEGG analyses for parent genes showed transition from protein complex assembly, cell-cell adhesion and cAMP signaling pathway at 6 h to intracellular signal transduction, protein phosphorylation and glutamatergic synapse at 12 h and 24 h. A circRNA-miRNA-mRNA network was successfully predicted. Enrichment analyses of targeted mRNAs indicated transcriptional regulations and pathways including Rap1, Ras, MAPK, PI3K-Akt, TNF and Wnt signaling and pathways in cancer. This was the first study to demonstrate that ICH significantly altered the expression of circRNAs with promising targets for therapeutic intervention.


Asunto(s)
Hemorragia Cerebral/metabolismo , Expresión Génica , ARN Circular/metabolismo , Animales , Masculino , MicroARNs/metabolismo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Am J Chin Med ; 46(6): 1225-1241, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30149758

RESUMEN

Subarachnoid hemorrhage (SAH) is a severe cerebrovascular disease with few effective pharmacotherapies available. Salvia miltiorrhiza, a traditional Chinese medicinal herb, has been widely used to treat cardiovascular diseases for centuries. Recent studies have demonstrated that magnesium lithospermate B (MLB), a bioactive ingredient extracted from Salvia miltiorrhiza, exerts neuroprotective effects in several central nervous system insults. However, little is known about the role of MLB in SAH-induced brain injury and the exact molecular mechanism. In the current study, we studied the neuroprotective effects of MLB in SAH and explored the potential mechanism. Adult male Sprague-Dawley rats were subjected to an endovascular perforation process to produce an SAH model. MLB was administrated intraperitoneally at 30[Formula: see text]min after SAH with a dose of 25[Formula: see text]mg/kg or 50[Formula: see text]mg/kg. We found that administration of MLB significantly attenuated brain edema and neurological deficits after SAH. In addition, immunofluorescence staining demonstrated that MLB dose-dependently inhibited the activation of microglia and reduced neuronal apoptosis. Western blot analysis showed that MLB decreased the expression of inflammatory cytokine TNF-[Formula: see text] and pro-apoptotic protein cleaved caspase-3. More importantly, MLB increased the expression of SIRT1, while inhibited the acetylation of NF-[Formula: see text]B. Furthermore, pretreatment with sirtinol (a selective inhibitor of SIRT1) reversed all the aforementioned effects of MLB after SAH. In conclusion, our results indicated that MLB exerted robust neuroprotective effects against SAH via suppressing neuroinflammation and apoptosis. These neuroprotective effects of MLB against SAH might be exerted via regulating the SIRT1/NF-[Formula: see text]B pathway. MLB or the SIRT1/NF-[Formula: see text]B pathway could be a novel and promising therapeutic strategy for SAH management.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Fármacos Neuroprotectores , Fitoterapia , Hemorragia Subaracnoidea/tratamiento farmacológico , Animales , Apoptosis , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Medicamentos Herbarios Chinos/aislamiento & purificación , Mediadores de Inflamación/metabolismo , Infusiones Parenterales , Masculino , Microglía/patología , FN-kappa B/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Salvia miltiorrhiza/química , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Hemorragia Subaracnoidea/genética , Hemorragia Subaracnoidea/patología , Factor de Necrosis Tumoral alfa/metabolismo
19.
Front Neurosci ; 12: 492, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30087588

RESUMEN

Studies have suggested that blood-brain barrier (BBB) disruption contributes to the pathogenesis of early brain injury after subarachnoid haemorrhage (SAH). Activation of the receptor tyrosine kinase ErbB4 can cause intramembrane proteolysis and release a soluble intracellular domain (ICD) that modulates transcription in the nucleus. This study was carried out to investigate the potential roles of ErbB4 in preserving BBB integrity after experimental SAH, as well as the underlying mechanisms of its protective effects. Endovascular perforation was used to prepare a rat SAH model. The SAH grade, neurological score, brain edema and BBB permeability were evaluated after surgery. Immunohistochemistry was used to determine the localization of ErbB4 and yes-associated protein (YAP). ErbB4 activator Nrg1 isoform ß1 (Nrg1ß1), Specific ErbB4 siRNA, YAP siRNA and PIK3CB specific inhibitor TGX 221 were used to manipulate the proposed pathway. The expression levels of ErbB4 ICD and YAP were markly increased after SAH. Double immunohistochemistry labeling showed that ErbB4 and YAP were expressed in endothelial cells and neurons. Activation of ErbB4 by Nrg1ß1 (dosage 150 ng/kg) treatment promoted the neurobehavioral deficit, alleviated the brain water content and reduced albumin leakage 24 and 72 h after SAH. ErbB4 activation significantly promoted YAP and PIK3CB activity and increased the expression of tight junction proteins Occludin and Claudin-5. Depletion of ErbB4 aggravated neurological impairment and BBB disruption after SAH. The beneficial effects of ErbB4 activation were abolished by YAP small-interfering RNA and specific PIK3CB inhibitor. Activation of ErbB4 improved neurological performance after SAH through the YAP/PIK3CB signaling pathway, this neuroprotective effects may associated with BBB maintenance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...